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Fundamental limitations of the eigenvalue continuation approach
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In this work, we show that the eigenvalue continuation approach introduced recently by Frame et al.
[Phys. Rev. Lett. 121, 032501 (2018)], despite its many advantages, has some fundamental limitations which
cannot be overcome when strongly correlated many-body systems are considered. Taking as a working example
a very simple system of several fermionic particles confined in a harmonic trap we show that the eigenvector
continuation is not able to go beyond the accuracy of the sampling states. We support this observation within a
very simple three-level model capturing directly this obstacle. Since mentioned inaccuracy cannot be determined
self-consistently within the eigenvalue continuation approach, support from other complementary methods is
needed.
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I. INTRODUCTION

One of the most challenging tasks in describing strongly
correlated many-body systems relies on the accurate determi-
nation of their many-body spectra. Even if one considers very
simplified theoretical models describing interacting particles,
finding an appropriate numerical approach to capture their
eigenstates is very hard. The main obstacle comes from the
fact that the size of the corresponding Hilbert space grows
exponentially with the number of particles considered, while
interactions couple all (or almost all) of them [1]. Thus, the
many-body basis of any approximate method has to be ade-
quately tailored to capture the appropriate Hilbert subspace
containing desired many-body state. It was recently shown
that a very useful method for this purpose is the eigenvalue
continuation method. In short, the method originates on the
observation that for smoothly varying Hamiltonians their tem-
poral eigenstates are well captured in the basis spanned by
eigenstates obtained for other values of varying parameters
[2]. This method has been used successfully in a variety of
systems [3–5], and recent studies have focused on the deter-
mination of its numerical convergence [6].

In this work, our aim is to shed some light on the limita-
tions of this widely explored method. Our motivation is based
on the observation that the fundamental reasoning standing
behind eigenvalue continuation, i.e., smoothness of states on
control parameters, is in practice not always sufficient to
obtain well-converged results. The reason is that the final
accuracy (accuracy of the eigenstate obtained for the extrapo-
lated parameter) depends substantially on the accuracy of the
sampling states. Even if the location in the Hilbert space of
the sampling states is well determined it does not necessarily
mean that the target state obtained by smooth extrapolation
is well characterized by their linear combination. With two
exemplary models discussed in the following we show that,

along with changing control parameters, the target state may
quickly flow out from the subspace spanned by sampling
states and lead to inaccurate or simply wrong results.

II. FEW-FERMION SYSTEM

As the first example, let us consider a one-dimensional
system of well-defined number of fermions of equal mass m
belonging to two different components σ ∈ {↑,↓} which are
confined in a parabolic potential of frequency �. We assume
that interactions between particles are the simplest possible,
i.e., they have a contact form between opposite-spin particles.
It means that the whole Hamiltonian of the system is a linear
function of interaction strength g and it can be written as
Ĥ (g) = Ĥ0 + gĤI , where the single-particle Hamiltonian Ĥ0

and the interaction Hamiltonian ĤI read

Ĥ0 =
∫

dx ψ̂†
σ (x)

(
− h̄2

2m

d2

dx2
+ m�2

2
x2

)
ψ̂σ (x), (1a)

ĤI =
√

h̄3�

m

∫
dx n̂↑(x)n̂↓(x). (1b)

Here, the fermionic operator ψ̂σ (x) annihilates σ -component
particle at position x and n̂σ (x) = ψ̂†

σ (x)ψ̂σ (x) is the σ -
component local density operator. It is clear that in this
convention both parts of the Hamiltonian have a dimension of
energy, thus interaction strength is controlled by a dimension-
less parameter g. Although it is not crucial for this discussion,
it is worth underlining that physical systems described by
the Hamiltonian Ĥ (g) are attainable in the state-of-the-art
experiments with ultracold atoms and they can be controlled
with tremendous accuracy (for review see [7–9]). Therefore,
the discussion is not only academic but have also practical
consequences. Since the exact solution of the problem with
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N > 2 is known only in two trivial limits, i.e., g = 0 and
g → ∞ (see [10–12] for details), one tries to harness all
possible numerical methods to obtain the spectrum of Ĥ (g) as
precisely as possible. This is especially challenging for strong
interactions (g � 1) since then interactions dominate single-
particle excitations. In this range, the decomposition of any
many-body eigenstate always contains an essential contribu-
tion from Fock states containing highly excited single-particle
orbitals. Thus, in practice it is not possible to handle all
information needed for a precise description of the state. In
the following, we limit ourselves only to the problem of
the many-body ground state since this case already exposes
the bottleneck of the eigenvalue continuation in all its glory.
However, generalization to other many-body eigenstates is
straightforward.

According to the eigenvalue continuation scheme, to get
the ground-state wave function and its energy for some target
interaction strength g�, first we choose K different values of
interactions {g(1), . . . , g(K )} for which corresponding many-
body ground states {|G(1)〉, . . . , |G(K )〉} and their energies
{E (1), . . . , E (K )} can be determined with appropriately high
accuracy. In the case studied, we pick K = 4 interaction
strengths from the vicinity of the noninteracting system, g ∈
{0.1, 0.2, 0.3, 0.4}, for which the exact diagonalization of the
many-body Hamiltonian can be performed very accurately.
The diagonalization is performed in the Fock basis {|Fi〉} of
noninteracting many-body states having the lowest energy,
i.e., from the infinite set of all many-body eigenstates of the
Hamiltonian Ĥ0 we select only these whose energy is not
larger than a fixed energy cut-off C. Of course, along with in-
creasing cut-off C the accuracy of the final result is improved.
However, since we consider here quite weak interactions, we
find that for large enough C further increasing of the cut-off
does not change the result noticeably. A detailed prescription
of this approach can be found in earlier works [13–17]. After
all, as a result of this procedure we obtain all four ground
states |G(k)〉 as a set of decomposition coefficients in the Fock
basis, |G(k)〉 = ∑

i α
(k)
i |Fi〉. Then, to obtain the many-body

ground state and its energy for the target interaction g�, we
apply standard eigenvalue continuation prescription [2]. First,
we calculate all matrix elements of the overlap matrix Nk,k′ =
〈G(k)|G(k′ )〉 = ∑

i ᾱ
(k)
i α

(k′ )
i and the full many-body Hamilto-

nian at target interaction H�
k,k′ = 〈G(k)|Ĥ (g�)|G(k′ )〉. As a

result we obtain two 4 × 4 matrices which in principle contain
maximal information about the many-body ground state at
target interaction which is encoded in the sampling states and
can be efficiently exploited via the eigenvalue continuation ap-
proach. Indeed, after solving a generalized eigenproblem for
the Hamiltonian matrix H� with respect to the overlap matrix
N , (H� − E0N )|G�〉 = 0, one obtains the target ground state
as a simple decomposition in the sampling ground-state basis,
|G�〉 = ∑

k γk|G(k)〉, and its corresponding eigenenergy E�.
We apply the scheme described above to the system studied

containing different numbers of particles up to five and for
different target interactions from a large range. The results
for the ground-state energy are presented in Fig. 1 where
we compare predictions of the eigenvalue continuation ap-
proach gaining from the exact diagonalization at sampling

FIG. 1. Ground-state energy (expressed in natural units of the
harmonic oscillator h̄�) as a function of dimensionless interaction
strength g for systems with a different number of particles and
obtained with different approaches. Black dots represents energies
obtained for small interactions g ∈ {0.1, 0.2, 0.3, 0.4} with exact
diagonalization method for two different energetic cutoffs of the
Fock basis C. Then, these energies are continued according to the
eigenvalue continuation prescription (solid red and blue lines). These
predictions are compared with results obtained with exact diagonal-
ization (red and blue dots) and a very precise variational scheme
based on the Jastrow pair-correlation ansatz. In the case of N↑ =
N↓ = 1 we compare with the exact analytical solution [18]. Note, that
predictions served by eigenvalue continuation never improve direct
exact diagonalization results.

interactions (solid red and blue lines for different cut-offs C)
with the method based on direct diagonalization of the Hamil-
tonian of the system. For a clear comparison, the latter is
performed on the same Fock basis as the sampling eigenstates
for which the eigenvalue continuation were determined. It is
clear that the eigenvalue continuation method works perfectly
and is able to extrapolate low-interaction results to very strong
repulsions and attractions, far from the perturbative regime.
Unfortunately, the results obtained are never more accurate
than the results obtained directly by the exact diagonalization
method. Moreover, for strong interactions, the method clearly
overestimates the ground-state energies of the system with
infinite repulsions (horizontal dashed line). In fact, in this
particular case, there is no additional gain from using the
eigenvalue continuation method and its predictions are fairly
worse than results obtained by other, much faster, and more
suitable approaches. As an example, with black lines, we
present the ground-state energies obtained with the Jastrow-
like variational approach [19,20]. These comparisons show
that increasing accuracy of the sampling states (forced by
increasing the cut-off C), although does not change their ener-
gies noticeable, significantly improves the eigenenergy of the
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target ground state predicted by the eigenvalue continuation
method.

The results clearly signal that the main obstacle and essen-
tial limitation for the eigenvalue continuation approach come
from its impossibility to go beyond (even approximately) the
Hilbert subspace in which the sampling states are calculated.
In the case studied, their accuracy is almost perfect since
contributions from highly excited Fock states not included
to initial calculations are negligible. However, when interac-
tions are increased, the importance of these neglected states
becomes significant and their omission leads to essentially
wrong results. Although the ground state is always isolated
from other states and smoothly changes with interactions g, it
always successively flows out of the initial Hilbert subspace;
independently of how large and accurate the sampling prob-
lem is. This observation should be taken into account when the
eigenvalue continuation approach is applied to problems for
which structures of many-body eigenstates are not sufficiently
known. In the case studied, this effect is directly triggered by
the form of mutual interactions assumed. Since contact inter-
actions give rise to cusps in the ground state wave functions at
the positions where two interacting particles meet, one needs
to extend considered Hilbert space and include additional
many-body states to describe the ground state appropriately
with increasing interaction g. Consequently, the problem is
inherently intractable by the eigenvalue continuation. In other
words, there is no path leading to the desired target state that
can be followed from the sampling points.

III. SYSTEM OF THREE COUPLED STATES

In fact, one can construct different simple models contain-
ing all the elements sufficient to expose the main obstacle
for the eigenvalue continuation approach. For example, let us
consider a simple three-level system described by the Hamil-
tonian Ĥ (g) = Ĥ0 + gĤ1 where Hamiltonians Ĥ0 and Ĥ1 are
represented by following matrices:

H0 =
⎛
⎝ 1 0.1 0

0.1 2 0.5
0 0.5 4

⎞
⎠, H1 =

⎛
⎝2 0 0

0 0 0
0 0 −2

⎞
⎠. (2)

The exact spectrum of the system can be obtained straight-
forwardly for any interaction g and it is presented in Fig. 2
(solid thin lines). We have chosen this Hamiltonian intention-
ally to illustrate the limitations of the eigenvalue continuation
method. As in the original example (1), the model ful-
fills all the conditions required for the applicability of the
eigenvalue continuation method. In particular, there are no
crossings between many-body levels (counterparts of quan-
tum phase transitions in many-body systems) or any breaks of
analyticity across the extrapolation. It is clear that all eigen-
values of the Hamiltonian (2) are smooth functions of the
coupling parameter g. Let us also mention that the model,
although very simple, is not very far from physical real-
izations with three-level atomic systems that can be almost
perfectly engineered with state-of-the-art quantum optics
experiments.

From Fig. 2 it is evident that, if we perform the eigenvalue
continuation in the subspace spanned by two sampling states

FIG. 2. The spectrum of the toy three-level model (2) as a func-
tion of interaction parameter g. In subsequent plots, with red lines, we
present the ground-state energy as predicted by the eigenvalue con-
tinuation method depending on the choice of two sampling ground
states (red dots) obtained exactly for interaction parameters g1 and
g2. It is clear that independently of this choice, the eigenvalue con-
tinuation cannot reproduce appropriately ground-state energy in the
entire range of the coupling since for some interactions g the exact
ground state (thin black line) has an essential contribution from the
state being perpendicular to the two sampling states. Consequently,
the ground-state energy is significantly overestimated by the eigen-
value continuation approach.

(marked by red dots), the target state (solid red line) can be
well-captured only for some interactions g, i.e., interactions
for which the target state has no essential contribution from
the perpendicular subspace. It is clear that in the case studied
it is not possible to choose two sampling states in the way
that the target state would reproduce the exact ground state in
the whole range of interactions. The reason is that along with
varying interaction g the ground state always flows out from
the subspace of sampling states and this information cannot
be retrieved by the eigenvalue continuation from anywhere.
The only possibility to patch this problem is to include an
additional state to the sampling basis. But this will make the
eigenvalue continuation method useless, since its complexity
becomes equivalent to the complexity of the whole problem
of the three-level system. On a much larger scale, the same
mechanism of inaccuracy generation is present in the original
problem of a two-component mixture of several fermions (1).
Probably, it is also the generic problem for a large class of
many-body problems describing interacting quantum parti-
cles.

IV. CONCLUSIONS

The eigenvalue continuation method has many advantages
and in many cases it serves as an alternative, accurate, and fast
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method for determining eigenstates of complicated Hamilto-
nians [2,6]. One should remember, however, that its efficiency
crucially depends on the quality of the sampling states used
for extrapolation to other values of the control parameters.
Moreover, it quickly looses its accuracy if the target eigen-
states have tendency to flow out from the Hilbert subspace
spanned by chosen sampling states. This is not evident in
many systems, where the identification of this limitation may
be difficult. We illustrate this in a toy model only with three
levels, where the third level does not play any role for one set
of parameters, but its inclusion becomes crucial in the extrapo-
lated region of parameters. In our first example, for a systems
of few interacting fermions, it is more difficult to diagnose
this limitation, because as the interactions are increased more
eigenvectors has to be included. We show that indeed the
accuracy cannot be better than exact diagonalization.

The main obstacle of the eigenvalue continuation method
is that, in contrast to other numerical methods, it is not a
self-converging method, i.e., it gives no tool to affirm that the
results obtained are inaccurate or simply wrong. Moreover,
even if the problem is detected, it does not serve any prescrip-
tion for increasing the accuracy of the target state since this
would require appropriate capturing of an additional sampling
state close to the target one. Without support of other methods,
it is not feasible.

All these limitations of the eigenvalue continuation method
are closely related to the orthogonality catastrophe phe-

nomenon [21,22] which has been identified for variety of
systems of few interacting fermions as well as bosons [23–25].

In summary, the eigenvalue continuation approach has
some fundamental limitations when, along with changes of
the control parameter, eigenstates of the Hamiltonian (par-
ticularly its ground state) flow into unknown areas of the
Hilbert space that are not adequately captured by the sampling
states. Related methods as generalized reduced basis methods
[26,27] also shows this limitations. Unfortunately, this ailment
cannot be detected solely within the eigenvalue continuation
method and requires support from other, complementary ap-
proaches.
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